AdaFruit NeoPixels

AdaFruit NeoPixels are small multi-colour (RGB) LEDs that can be chained together and be
individually addressed by a microcontroller to create many interesting and sparkly installation
or wearable tech projects! We will be connecting NeoPixels to the Raspberry Pi computer
today and using the CircuitPython library from AdaFruit to control them.

Theoretically you can connect as many NeoPixels together as you want; however, the more
NeoPixels you connect, the greater the amount of power they demand. When powering them
directly from the Raspberry Pi (as we will do today) you are able to power a few at a time.

NeoPixels also operate on a 5V signal whereas the Pi operates on a 3.3V signal. Again, for
today’s purpose, we are going to use the 3.3V signal from the Pi to control the NeoPixels. If
you were building a large scale project, it is best to use a level shifter that steps the control
signal from the Pi up to 5V.

This website has all the information you need:
https://learn.adafruit.com/neopixels-on-raspberry-pi?view=all

Install and enable libraries and
interfaces

You do not need to carry out this section at the Jam as
we have already completed this for you, but if you were to
use one at home you would need to follow these steps.

1. First we check that PIP for Python 3 is installed:

sudo apt-get install python3-pip

2. Now we enable I12C and SPI in menu “5 Interfacing Options” of raspi-config:
3. Reboot
4. Now check that both 12C and SPI are enabled:
ls /dev/i2c* /dev/spi#
5. You should see this output:
/dev/i2c-1 /dev/spidev@.0 /dev/spidevO.1
6. Now install the Raspberry Pi GPIO library:
sudo pip3 install RPI.GPIO
7. Next install the AdaFruit Blinka library:
sudo pip3 install adafruit-blinka
8. Finally install the AdaFruit CircuitPython NeoPixel libraries:

sudo pip3 install rpi_ws281x adafruit-circuitpython-neopixel

https://learn.adafruit.com/neopixels-on-raspberry-pi?view=all

Bt \
LLRASEIAM®

Wiring up our NeoPixels -
Now we can connect our NeoPixels to our Raspberry Pi. It is best to do this with your

computer switched off so that you can double check everything is connected correctly before
powering it on.

Use the diagram below to connect the type of NeoPixel you are using. The pin labelled “V+”
connects to the 5 volt pin of the Pi (red cable). The pin labelled “G” or “GND” connects to a
ground pin on the Pi (black cable). Finally the pin labelled “In” connects to GPIO18 on the Pi
(yellow cable).

If you are using the NeoPixel Breadboard be sure that when you chain them together you
are connecting the “out” from one NeoPixel to the “in” on the next.

NeoPixel Ring

fritzing 4

L

: >
NeoPixel Breadboard : —

——————

INENENNNNNNENE
DSI (DISPLAY)

(Y¥3UVI) ISD

ETHERNET

fritzing

Writing our Python

Will will be using the Mu Python IDE. Open it by going to the “Raspberry Pi menu >
Programming > mu”. If you do not have mu available on your Raspberry Pi, you can install
by typing the following into a terminal window:

sudo apt install mu-editor

Mu 1.0.2 - untitled ~ o x
-
F)(+)(L)(&)(>) 3K N)(RQ)(Q)(E)|(sb)(2)(O
Mode New Load Save Run Debug REPL Plotter Zoom-in Zoom-out Theme Check Help Quit

untitied ¢
1

Python ¢-

RASEIAM®

Single Light

We will start by testing we can light up a single NeoPixel. Copy the following code into a new
file in the mu editor. Change the value of the “NUM_PIXELS” constant to match the number
of NeoPixels you have in your chain (16 for the Ring, 7 for the Jewel and however many you
have chained together for the Breadboard). Save the file as “single.py” and run it in the
terminal with this command:

sudo python3 /home/pi/mu_code/single.py

ngie.py A
1 P import our python libraries
2 import board
3 import neopixel
4
§ # define our constant for the number of neopixels
& # 16 for the Ring, 7 for the Jewel
7 NUM_PIXELS = 16
8 # define our constant for the GPIO pin number
9 PIXEL_PIN = board.D18
10 # The order of the pixel colors - RGB or GRB
11 # Some NeoPixels have red and green reversed!
12 ORDER = neopixel.GRB
13
14 # define our connection string
15 pixels = neopuel NeuPlxel{PIKEL PIN, NUM_PIXELS, brightness=@.2,
16 5 - - - ' . auto_write=False, pixel_order=0RDER)
17
18 # light the first pixel red
19 # colours are defined wi Lh a Red, Green and Blue tuple.
20 # ® means none of that colour and 255 means all of that colour
21 pixels[@] = (255, @, @)
22 # we call pixels.show() to display the changes
23 pixels.show()

Light Them All!

Now we can create a new file with the following code. Save it as “lightall.py” and then run it
in the terminal with this command:

sudo python3 /home/pi/mu_code/lightall.py

= ey ek -

1 P import our python libraries

2 import board

3 import neopixel

4 1mport time

5

6 NUM_PIXELS = 16 # adjust to match

7 PIXEL_PIMN = board.D18

2 ORDER = neopixel.GRB

9

10 # define our connection string

fha plxelb = nLDplxel NEDPlxel{PIKEL PIN, NUM_PIXELS, brightness=0.2,
12 - ' . auto_write=False, pixel_order=0RDER)
13

14 # light all the pixels red, sleep for 5 seconds

15 # then clear them all. note the double brackets here

16 pixels.fill((255, @, @))

17 pixels.show()

18 time.sleep(5)

19 pixels.fill((e, @, @))

20 pixels.show()

Wipe Pattern

We can now use a loop to go around each pixel in turn and create a wipe effect. Copy this
code into a new file and save it a “wipe.py” and then run it in the terminal with this
command:

sudo python3 /home/pi/mu_code/wipe.p

vipe.py %
1 P import our python libraries
2 import board
3 import neopixel
4 import time
5
6 MNUM_FIXELS = 16 # adjust to match
7 PIXEL_PIN = board.D18
8 ORDER = neopixel.GRB
9
10 # define our connection string
11 pixels = neoplxel NeoPlxel{PIxEL PIN, NUM_PIXELS, brightness=0.2,
2 5 : : : : auto_write=False, pixel_order=0RDER)
13
14 # loop forever then loop through number of pixels
15 # clear the all, set pixel at index position to
16 # red, sleep for 8.85 seconds, move to next pixel
17 while True:
18 fur i in range(NUM_PIXELS):
19 ! pixels.fill((e, @, @))
20 pixels. show()
7] pixels[i] = (255, @, B)
29 time.sleep(@.@5)
23 pixels.show()

As this code uses a “while True” loop it will run indefinitely. Press Ctrl and C together in the
terminal to stop it running.

RASEIAM®

Rainbows!

This code uses two functions; “wheel” and “rainbow_cycle”. These functions are used to
create a rather pretty rainbow effect! Copy this code into a new file, save it as “rainbow.py”
and run it from the terminal with this command:

sudo python3 /home/pi/mu_code/rainbow.py

T —
1 P import our python libraries
2 import board
3 import neopixel
4 import time
5
6

NUM_PIXELS = 16 # adjust to match
PIXEL_PIN = board.D18

& ORDER = neopixel.GRB

g

10 # define our connection stri ng

11 pixels = neuplxel NeoPixel (PIXEL_PIN, NUM_PIXELS, brightness=0.2,
12 é 5 i ; ; § auto_write=False, pixel_order=0RDER)

a0

14 def wheel(pos):

15 # Input a value @ to 255 to get a color value.
16 # The colours are a transition r - g - b - back to r
17 if pos < @ or pos > 255:
18 | r=g=b=20
19 elif pos < 85:
20 r = int(pos * 3)
2] g = int(255 - pos#3)
22 b=2o
24 elif pos < 17@:
24 pos -= 85
25 r= int(255 - pos*3)
26 g=0
3 b = int(pos=3)
28 else
29 pos -= 170
30 r=2a
31 g = int(pos*3)
32 b = int(255 - pos#3)
33 return (r, g, b) if ORDER == neopixel.RGB or ORDER == neopixel.GRB else (r, g, b, @)
34
34
35 def rainbow_cycle(wait):
36 for j in range(255):
37 ; for i in range(NUM_PIXELS):
38 § § pixel_index = (i # 256 // NUM_PIXELS) + j
39 .| pixels[i] = wheel(pixel_index & 255)
40 . pixels.show()
41 © time.sleep(wait)
42
43 while True:
44 rainbow_cycle(0.001)

As this code uses a “while True” loop it will run indefinitely. Press Ctrl and C together in the
terminal to stop it running.

